Article ID Journal Published Year Pages File Type
3991281 Journal of Thoracic Oncology 2009 8 Pages PDF
Abstract

PurposeAlthough many lung cancers express the epidermal growth factor receptor and the vascular endothelial growth factor, only a small fraction of patients will respond to inhibitors of these pathways. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS) has shown promise in biomarker discovery, potentially allowing the selection of patients who may benefit from such therapies. Here, we use a matrix-assisted laser desorption/ionization MS proteomic algorithm developed from a small dataset of erlotinib-bevacizumab treated patients to predict the clinical outcome of patients treated with erlotinib alone.MethodsPretreatment serum collected from patients in a phase I/II study of erlotinib in combination with bevacizumab for recurrent or refractory non-small cell lung cancer was used to develop a proteomic classifier. This classifier was validated using an independent treatment cohort and a control population.ResultA proteomic profile based on 11 distinct m/z features was developed. This predictive algorithm was associated with outcome using the univariate Cox proportional hazard model in the training set (p = 0.0006 for overall survival; p = 0.0012 for progression-free survival). The signature also predicted overall survival and progression-free survival outcome when applied to a blinded test set of patients treated with erlotinib alone on Eastern Cooperative Oncology Group 3503 (n = 82, p < 0.0001 and p = 0.0018, respectively) but not when applied to a cohort of patients treated with chemotherapy alone (n = 61, p = 0.128).ConclusionThe independently derived classifier supports the hypothesis that MS can reliably predict the outcome of patients treated with epidermal growth factor receptor kinase inhibitors.

Related Topics
Health Sciences Medicine and Dentistry Oncology
Authors
, , , , , , , , , , , , , , ,