Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4001766 | American Journal of Ophthalmology | 2016 | 9 Pages |
PurposeTo evaluate the quantitative characteristics of the radial peripapillary capillary (RPC) network in glaucoma, glaucoma suspect, and normal eyes using speckle variance optical coherence tomography angiography (OCT-A). To determine correlations between RPC density, nerve fiber layer (NFL) thickness, and visual field indices.DesignCross-sectional study.MethodsOCT-A images of RPCs were acquired at a single institution using a custom-built 1060 nm system from 3 groups: unilateral glaucoma (10 eyes from 5 subjects), glaucoma suspects (6 eyes from 3 subjects), and normal control eyes (16 eyes from 9 normal subjects). Peripapillary NFL thickness measurements were determined using spectral-domain optical coherence tomography. Glaucoma and glaucoma suspects also underwent automated 30-2 Humphrey visual field analysis. Manual tracing techniques were used to quantify RPC density in the OCT-A images. Data were analyzed using a linear mixed model with 1 fixed-effect covariate. Correlations between main outcome measures (RPC density, NFL thickness, and visual field index) were determined.ResultsMean age was not significantly different between the 3 groups (P = .25). The density of RPCs was significantly lower in glaucomatous eyes compared with matched-peripapillary regions in the fellow eye, glaucoma suspect group, and normal group (all P < .001). RPC density was strongly correlated with NFL thickness (P < .001) and visual field index (P < .001).ConclusionsSignificant reductions in RPC density were correlated with sites of NFL decrease and visual field loss in glaucoma. Speckle variance OCT-A allows visualization and quantification of RPCs and may therefore be a useful tool for indirectly quantifying and monitoring retinal ganglion cell axonal injury in glaucoma.