Article ID Journal Published Year Pages File Type
4034778 Vision Research 2009 15 Pages PDF
Abstract

This article argues that phenomenological description and neurophysiological correlation complement each other in perception research. Whilst phenomena constitute the material, neuronal mechanisms are indispensable for their explanation. Numerous examples of neurophysiological correlates show that the correlation of phenomenology and neurophysiology is fruitful. Phenomena for which neuronal mechanism have been found include: (in area V1) filling-in of real and artificial scotomata, contour integration, figure-ground segregation by orientation contrast, amodal completion, and motion transparency; (in V2) modal completion, border ownership, surface transparency, and cyclopean perception; (in V3) alignment in dotted contours, and filling-in with dynamic texture; (in V4) colour constancy; (in MT) shape by accretion/deletion, grouping by coherent motion, apparent motion in motion quartets, motion in apertures, and biological motion. Results suggest that in monkey visual cortex, occlusion cues, including stereo depth, are predominantly processed in lower areas, whereas mechanisms for grouping and motion are primarily represented in higher areas. More correlations are likely to emerge as neuroscientists strive for a better understanding of visual perception. The paper concludes with a review of major achievements in visual neuroscience pertinent to the study of the phenomena under consideration.

Related Topics
Life Sciences Neuroscience Sensory Systems
Authors
,