Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4035409 | Vision Research | 2006 | 6 Pages |
Possible physiological mechanisms to explain the flash-lag effect, in which subjects perceive a flashed item that is co-localized with a moving item as trailing behind the moving item, have been found within the retina of lower species, and in the motor pathways of humans. Here, we demonstrate flash-lag employing “second-order” moving and flashed stimuli, defined solely by their binocular-disparity, to circumvent any possible “early” contributions to the effect. A significant flash-lag effect was measured with cyclopean stimuli composed entirely of correlated random dot patterns. When the disparity-defined moving stimulus was replaced with a luminance-defined one, potentially engaging retinal mechanisms, the magnitude of the measured effect showed no significant change. Thus, in primates, though retinal mechanisms may contribute, flash-lag must be explained through cortical processes.