Article ID Journal Published Year Pages File Type
4035540 Vision Research 2007 8 Pages PDF
Abstract

When two flickering sources are far enough apart to avoid low-level motion signals, phase judgment relies on the temporal individuation of the light and dark phases of each source. The highest rate at which the individuation can be maintained has been referred to as Gestalt flicker fusion [Van de Grind, W. A., Grüsser, O. -J., & Lunkenheimer, H. U. (1973). Temporal transfer properties of the afferent visual system. Psychophysical, neurophysiological and theoretical investigations. In R. Jung (Ed.), Handbook of sensory physiology (Vol. VII/3, pp. 431–573). Berlin: Springer, Chapter 7] and this has been taken as a measure of the temporal resolution of attention [Verstraten, F. A., Cavanagh, P., & Labianca, A. T. (2000). Limits of attentive tracking reveal temporal properties of attention. Vision Research, 40, 3651–3664; Battelli, L., Cavanagh, P., Intriligator, J., Tramo, M. J., Henaff, M. A., Michel, F., et al. (2001). Unilateral right parietal damage leads to bilateral deficit for high-level motion. Neuron, 32, 985–995]. Here we examine the variation of the temporal resolution of attention across the visual field using phase judgments of widely spaced pairs of flickering dots presented either in the upper or lower visual field and at either 4° or 14° eccentricity. We varied inter-dot separation to determine the spacing at which phase discriminations are no longer facilitated by low-level motion signals. Our data for these long-range phase judgments showed that temporal resolution decreases only slightly with increased distance from center of gaze (decrease from 11.4 to 8.9 Hz between 4° to 14°), and does not differ between upper and lower visual fields. We conclude that the variation of the temporal limits of visual attention across the visual field differs markedly from that of the spatial resolution of attention.

Related Topics
Life Sciences Neuroscience Sensory Systems
Authors
, ,