Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4035591 | Vision Research | 2006 | 16 Pages |
Recent evidence suggests that object surfaces and their properties are represented at early stages in the visual system of primates. Most likely invariant surface properties are extracted to endow primates with robust object recognition capabilities. In real-world scenes, luminance gradients are often superimposed on surfaces. We argue that gradients should also be represented in the visual system, since they encode highly variable information, such as shading, focal blur, and penumbral blur. We present a neuronal architecture which was designed and optimized for segregating and representing luminance gradients in real-world images. Our architecture in addition provides a novel theory for Mach bands, whereby corresponding psychophysical data are predicted consistently.