Article ID Journal Published Year Pages File Type
4036008 Vision Research 2007 13 Pages PDF
Abstract

The perceived position of a stationary Gaussian window of a Gabor target shifts in the direction of motion of the Gabor’s carrier stimulus, implying the presence of interactions between the specialized visual areas that encode form, position, and motion. The purpose of this study was to examine the temporal and spatial properties of this illusory motion-induced position shift (MIPS). We measured the magnitude of the MIPS for a pair of horizontally separated (2 or 8 deg) truncated-Gabor stimuli (carrier = 1 or 4 cpd sinusoidal grating, Gaussian envelope SD = 18 arc min, 50% contrast) or a pair of Gaussian-windowed random-texture patterns that drifted vertically in opposite directions. The magnitude of the MIPS was measured for drift speeds up to 16 deg/s and for stimulus durations up to 453 ms. The temporal properties of the MIPS depended on the drift speed. At low velocities, the magnitude of the MIPS increased monotonically with the stimulus duration. At higher velocities, the magnitude of the MIPS increased with duration initially, then decreased between approximately 45 and 75 ms before rising to reach a steady-state value at longer durations. In general, the magnitude of the MIPS was larger when the truncated-Gabor or random-texture stimuli were more spatially separated, but was similar for the different types of carrier stimuli. Our results are consistent with a framework that suggests that perceived form is modulated dynamically during stimulus motion.

Keywords
Related Topics
Life Sciences Neuroscience Sensory Systems
Authors
, , , ,