Article ID Journal Published Year Pages File Type
4036460 Vision Research 2006 17 Pages PDF
Abstract

Dynamic properties and control strategies of step responses by accommodation and disaccommodation differ from one another. Peak velocity of accommodation increases with response magnitude, while peak velocity and peak acceleration of disaccommodation increase with starting position. These dynamic properties can be modeled as control strategies that use independent acceleration-pulse and velocity-step components that are integrated respectively into phasic-velocity signals that control movement and tonic-position signals that control magnitude. Accommodation is initiated toward its final destination by an acceleration-pulse whose width increases with response magnitude to increase peak velocity. Disaccommodation is initiated toward a default destination (the far point) by an acceleration-pulse whose height increases with dioptric distance of the starting position to increase peak velocity and peak acceleration. Both responses are completed and maintained by tonic-position signals whose amplitudes are proportional to the final destination. Mismatched amplitudes of phasic-velocity and tonic-position signals in disaccommodation produce unstable step responses.

Related Topics
Life Sciences Neuroscience Sensory Systems
Authors
, ,