Article ID Journal Published Year Pages File Type
4040757 Annals of Physical and Rehabilitation Medicine 2015 6 Pages PDF
Abstract

Spinal cord injury leads to a range of disabilities, including limitations in locomotor activity, that seriously diminish the patients’ autonomy and quality of life. Electrochemical neuromodulation therapies, robot-assisted rehabilitation and willpower-based training paradigms restored supraspinal control of locomotion in rodent models of severe spinal cord injury. This treatment promoted extensive and ubiquitous remodeling of spared circuits and residual neural pathways. In four chronic paraplegic individuals, electrical neuromodulation of the spinal cord resulted in the immediate recovery of voluntary leg movements, suggesting that the therapeutic concepts developed in rodent models may also apply to humans. Here, we briefly review previous work, summarize current developments, and highlight impediments to translate these interventions into medical practice to improve functional recovery of spinal-cord-injured individuals.

Related Topics
Health Sciences Medicine and Dentistry Orthopedics, Sports Medicine and Rehabilitation
Authors
, , , , , , , , , , , , ,