Article ID Journal Published Year Pages File Type
4044312 Arthroscopy: The Journal of Arthroscopic & Related Surgery 2012 9 Pages PDF
Abstract

PurposeTo compare tendon-bone interface motion and cyclic loading in a single-row, triple-loaded anchor repair with a suture-tape, rip-stop, double-row rotator cuff repair.MethodsUsing 18 human shoulders from 9 matched cadaveric pairs, we created 2 groups of rotator cuff repairs. Group 1 was a double-row, rip-stop, suture-tape construct. Group 2 was a single-row, triple-loaded construct. Before mechanical testing, the supraspinatus footprint was measured with calipers. A superiorly positioned digital camera optically measured the tendon footprint motion during 60° of humeral internal and external rotation. Specimens were secured at a fixed angle not exceeding 45° in reference to the load. After preloading, each sample was cycled between 10 N and 100 N for 200 cycles at 1 Hz, followed by destructive testing at 33 mm/s. A digital camera with tracking software measured the repair displacement at 100 and 200 cycles. Ultimate load and failure mode for each sample were recorded.ResultsThe exposed anterior footprint border (6.5% ± 6%) and posterior footprint border (0.9% ± 1.7%) in group 1 were statistically less than the exposed anterior footprint border (30.3% ± 17%) and posterior footprint border (29.8% ± 14%) in group 2 (P = .003 and P < .001, respectively). The maximal internal rotation and external rotation tendon footprint displacements in group 1 (1.6 mm and 1.4 mm, respectively) were less than those in group 2 (both 3.6 mm) (P = .007 and P = .004, respectively). Mean displacement after 100 cycles for group 1 and group 2 was 2.0 mm and 3.2 mm, respectively, and at 200 cycles, mean displacement was 2.5 mm and 4.2 mm, respectively (P = .02). The mean ultimate failure load in group 1 (586 N) was greater than that in group 2 (393 N) (P = .02). The suture-tendon interface was the site of most construct failures.ConclusionsThe suture-tape, rip-stop, double-row rotator cuff repair had greater footprint coverage, less rotational footprint displacement, and a greater mean ultimate failure load than the triple-loaded, single-row repair on mechanical testing. No double-row or single-row constructs showed 5 mm of displacement after the first 100 cycles. The most common failure mode for both constructs was suture tearing through the tendon.Clinical RelevanceDifferences in cuff fixation influence rotational tendon movement and may influence postoperative healing. Stronger repair constructs still fail at the suture-tendon interface.

Related Topics
Health Sciences Medicine and Dentistry Orthopedics, Sports Medicine and Rehabilitation
Authors
, ,