Article ID Journal Published Year Pages File Type
4050289 Clinical Biomechanics 2014 14 Pages PDF
Abstract

BackgroundDespite the number of advantages of bone-anchored prostheses, their use in patients is limited due to the lack of complete skin–implant integration. The objective of the present study was to develop an animal model that would permit both detailed investigations of gait with a bone-anchored limb prosthesis and histological analysis of the skin–implant–bone interface after physiological loading of the implant during standing and walking.MethodsFull-body mechanics of walking in two cats were recorded and analyzed before and after implantation of a percutaneous porous titanium pylon into the right tibia and attachment of a prosthesis. The rehabilitation procedures included initial limb casting, progressively increasing loading on the implant, and standing and locomotor training. Detailed histological analysis of bone and skin ingrowth into implant was performed at the end of the study.FindingsThe two animals adopted the bone-anchored prosthesis for standing and locomotion, although loads on the prosthetic limb during walking decreased by 22% and 62%, respectively, 4 months after implantation. The animals shifted body weight to the contralateral side and increased propulsion forces by the contralateral hindlimb. Histological analysis of the limb implants demonstrated bone and skin ingrowth.InterpretationThe developed animal model to study prosthetic gait and tissue integration with the implant demonstrated that porous titanium implants may permit bone and skin integration and prosthetic gait with a bone-anchored prosthesis. Future studies with this model will help optimize the implant and prosthesis properties.

Related Topics
Health Sciences Medicine and Dentistry Orthopedics, Sports Medicine and Rehabilitation
Authors
, , , , ,