Article ID Journal Published Year Pages File Type
4050546 Clinical Biomechanics 2012 7 Pages PDF
Abstract

BackgroundA potential source of patellofemoral pain, one of the most common problems of the knee, is believed to be altered patellofemoral kinematics due to a force imbalance around the knee. Although no definitive etiology for this imbalance has been found, a weak vastus medialis is considered a primary factor. Therefore, this study's purpose was to determine how the loss of vastus medialis obliquus force alters three-dimensional in vivo knee joint kinematics during a volitional extension task.MethodsEighteen asymptomatic female subjects with no history of knee pain or pathology participated in this IRB approved study. Patellofemoral and tibiofemoral kinematics were derived from velocity data acquired using dynamic cine-phase contrast MRI. The same kinematics were then acquired immediately after administering a motor branch block to the vastus medialis obliquus using 3–5 ml of 1% lidocaine. A repeated measures analysis of variance was used to test the null hypothesis that the post- and pre-injection kinematics were no different.FindingsThe null hypothesis was rejected for patellofemoral lateral shift (P = 0.003, max change = 1.8 mm, standard deviation = 1.7 mm), tibiofemoral lateral shift (P < 0.001, max change = 2.1 mm, standard deviation = 2.9 mm), and tibiofemoral external rotation (P < 0.001, max change = 3.7°, standard deviation = 4.4°).InterpretationThe loss of vastus medialis obliquus function produced kinematic changes that mirrored the axial plane kinematics seen in individuals with patellofemoral pain, but could not account for the full extent of these changes. Thus, vastus medialis weakness is likely a major factor in, but not the sole source of, altered patellofemoral kinematics in such individuals.

Related Topics
Health Sciences Medicine and Dentistry Orthopedics, Sports Medicine and Rehabilitation
Authors
, , , ,