Article ID Journal Published Year Pages File Type
4050549 Clinical Biomechanics 2012 6 Pages PDF
Abstract

BackgroundScoliosis is a serious disease in which a human spine is abnormally deformed in three dimensions with vertebral rotation. Surgical treatment is attained when the scoliotic spine is corrected into its normal shape by implant rods and screws fixed into the vertebrae. The three-dimensional corrective forces acting at the screws deformed the implant rod during the surgical treatment of scoliosis. The objective of this study was to propose a method to analyze the three-dimensional forces acting at the rod using the changes of implant rod geometry before and after the surgical treatment.MethodsAn inverse method based on Finite Element Analysis is proposed. The geometries of implant rod before and after the surgical treatment were measured three dimensionally. The implant rod before the surgical treatment was reconstructed using an elasto-plastic finite element model. The three-dimensional forces were applied iteratively to the rod through the screws such that the rod is deformed the same after the surgical treatment of scoliosis.FindingsThe maximum force acting at the screw of each patient ranged from 198 N to 439 N. The magnitude of forces was clinically acceptable. The maximum forces occurred at the lowest fixation level of vertebra of each patient.InterpretationThe three-dimensional forces distribution that deformed the rod can be evaluated using the changes of implant geometry. Although the current clinical cases are still few, this study demonstrated the feasibility of measuring the forces that deformed the implant rod after the surgical treatment of scoliosis.

Related Topics
Health Sciences Medicine and Dentistry Orthopedics, Sports Medicine and Rehabilitation
Authors
, , , , ,