Article ID Journal Published Year Pages File Type
4065517 Journal of Electromyography and Kinesiology 2006 10 Pages PDF
Abstract

Several methods have been developed recently for the analysis of the spatial motion of the scapula and the arm, whereby the spatial position of shoulder bones is determined in static conditions by interrupting motion. The authors have developed a 3D motion analysis method recording scapular motion in progress with appropriate accuracy in the course of arm movements of various degrees. The objective of this study is to explore the applicability of the method developed, as well as to compare it with and verify it by other methods developed earlier. The position and displacements of shoulder bones were determined on 30 shoulders of 15 healthy people. The newly developed measurement method is based on the mechanical basic principle stating that the position and motion of a rigid body – in this case, the bones (segments) forming the shoulder joint – can be calculated at any moment from the spatial coordinates of three points of a segment and any changes thereof in the course of motion. Ultrasound-based triplets providing the three points (fundamental points) by a segment as required for measurement were fixed on the sternum (modeling the trunk), the clavicle, the acromion (modeling the scapula), the upper arm, and the lower arm. The position of the sixteen anatomical points involved in the study were determined by an ultrasound-based pointer in the local coordinate system specified by the fundamental points before starting measurements. The ZEBRIS ultrasound-based motion analysis system was used for measuring the spatial coordinates of triplets in the course of continuous motion. The spatial coordinates of the designated anatomical points can be calculated by the method of triangulation. The method was calibrated by a ZEBRIS mapping (3DCAD) software commercially available, and the measurement error rate of the method was determined by statistical calculations. On the basis of calibration and error calculations it could be established that the accuracy and the reproducibility of the method were appropriate, in accordance with the limit values to be found in the literature.

Related Topics
Health Sciences Medicine and Dentistry Orthopedics, Sports Medicine and Rehabilitation
Authors
, ,