Article ID Journal Published Year Pages File Type
4072844 Journal of Shoulder and Elbow Surgery 2016 8 Pages PDF
Abstract

BackgroundThe repair of rotator cuff tears is often complicated by fatty degeneration, which is the combination of lipid accumulation, fibrosis, inflammation, and muscle weakness. A signaling molecule that plays a central role in these processes is p38 mitogen-activated protein kinase (MAPK). The purpose of this study was to evaluate the ability of a small molecule inhibitor of p38 MAPK, SB203580, to reduce fatty degeneration in a preclinical model of rotator cuff injury and repair.Materials and MethodsAdult rats underwent a bilateral supraspinatus tenotomy that was repaired 30 days later. Rats were treated with SB203580 or vehicle every 2 days, with injections beginning 3 days before surgery and continuing until 7 days after surgery. Two weeks after surgical repair, muscles were analyzed using histology, lipid profiling, gene expression, and permeabilized muscle fiber contractility.ResultsInhibition of p38 MAPK resulted in a nearly 49% reduction in fat accumulation and a 29% reduction in collagen content, along with changes in corresponding genes regulating adipogenesis and matrix accumulation. There was also a marked 40% to 80% decrease in the expression of several proinflammatory genes, including IL1B, IL6, and COX2, and a 360% increase in the anti-inflammatory gene IL10. No differences were observed for muscle fiber force production.ConclusionInhibition of p38 MAPK was found to result in a significant decrease in intramuscular lipid accumulation and fibrosis that is usually seen in the degenerative cascade of rotator cuff tears, without having negative effects on the contractile properties of the rotator cuff muscle tissue.

Related Topics
Health Sciences Medicine and Dentistry Orthopedics, Sports Medicine and Rehabilitation
Authors
, , , , , , , , ,