Article ID Journal Published Year Pages File Type
4077765 The Knee 2012 5 Pages PDF
Abstract

BackgroundThe aim of this study was to quantify the effects of distal femoral cut height on maximal knee extension and coronal plane knee laxity.MethodsSeven fresh-frozen cadaver legs from hip-to-toe underwent a posterior stabilized TKA using a measured resection technique with a computer navigation system equipped with a robotic cutting guide. After the initial femoral resections were performed, the posterior joint capsule was sutured until a 10° flexion contracture was obtained with the trial components in place. Two distal femoral recuts of + 2 mm each were then subsequently made and the trials were reinserted. The navigation system was used to measure the maximum extension angle achieved and overall coronal plane laxity [in degrees] at maximum extension, 30°, 60° and 90° of flexion, when applying a standardized varus/valgus load of 9.8 [Nm] across the knee.ResultsFor a 10 degree flexion contracture, performing the first distal recut of + 2 mm increased overall coronal plane laxity by approximately 4.0° at 30° of flexion (p = 0.002) and 1.9° at 60° of flexion (p = 0.126). Performing the second + 2 mm recut of the distal femur increased mid-flexion laxity by 6.4° (p < 0.0001) at 30° and 4.0° at 60° of flexion (p = 0.01), compared to the 9 mm baseline resection (control). Maximum knee extension increased from 10° of flexion to 6.4° (± 2.5° SD, p < 0.005) and to 1.4° (± 1.8° SD, p < 0.001) of flexion with each 2 mm recut of the distal femur.ConclusionsRecutting the distal femur not only increases the maximum knee extension achieved but also increases coronal plane laxity in midflexion.

Related Topics
Health Sciences Medicine and Dentistry Orthopedics, Sports Medicine and Rehabilitation
Authors
, , , , , , ,