Article ID Journal Published Year Pages File Type
4099707 The Spine Journal 2009 7 Pages PDF
Abstract

Background contextIt was recently demonstrated that the postnatal transition from a notochordal to a fibrocartilaginous nucleus pulposus (NP) is accomplished exogenously by chondrocytes migrating from hyaline cartilage end plates (CEs) into the ectopic notochordal NP region. Although our previous in vivo studies showed evidences for the migration of CE chondrocyte from hyaline CEs into the notochordal NP, it is unknown whether CE chondrocytes of the intervertebral disc (IVD) really have a motile property. In addition, the effect of notochordal cells on this property has not been elucidated.PurposeThe purpose of this in vitro study was to demonstrate whether CE chondrocytes of the IVD are capable of migration, and whether there is any biological link between notochordal cells and CE chondrocytes that may regulate the CE chondrocyte migration.Study design/settingIn vitro cell migration assays were performed using rat IVDs.MethodsNotochordal cells and chondrocytes were obtained from the NP and CE tissues, respectively, and were cultured separately. The different numbers of notochordal cells and the supernatant (conditioned medium) that contained soluble factors produced by notochordal cells were used to demonstrate their effects on the migration of CE chondrocytes. Bovine serum albumin (BSA) and lysophosphatidic acid (LPA) were used as negative and positive controls, respectively.ResultsCompared with BSA, LPA, notochordal cells (N=4×, 2×, 1×, and 0.5×105), and its conditioned media (unconcentrated and fivefold concentrated) significantly increased migration of CE chondrocytes (p<.05 in all comparisons). Particularly, notochordal cells and its conditioned media increased migration in a number- and concentration-dependent manner, respectively.ConclusionsThis study demonstrates that CE chondrocytes of the IVD are capable of migration and that soluble factors produced by notochordal cells stimulate the migration. These results provide a plausible explanation to the question of why CE chondrocytes of the IVD migrate into the ectopic NP region during the natural transition from the notochordal to fibrocartilaginous NP.

Related Topics
Health Sciences Medicine and Dentistry Orthopedics, Sports Medicine and Rehabilitation
Authors
, , , , , , ,