Article ID Journal Published Year Pages File Type
4137107 Pathophysiology 2011 7 Pages PDF
Abstract

Amphetamines (AMP) are potent psychostimulants and commonly used drugs of abuse. Its chronic administration creates tolerance and addiction and also associated with neurotoxicity and hepatocellular damage through oxidative stress. The present study was designed to evaluate the cytotoxic effects as well as the oxidative stress induced by d-amphetamines in isolated rat hepatocytes. Hepatocytes were isolated by collagenase perfusion technique and were exposed to different concentrations of AMP (0.2, 0.4, 0.8 and 1.6 mM) in a time-course experiment for up to 2 h. AMP exposure induced a significant decrease in cell viability and a significant increase in the leakage of hepatic enzymes {lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and asparate aminotransferase (AST)} in a concentration and time-related manner. In the same experiment, GSH content and thiobarbituric acid reactive substances (TBARS) generation were determined as indices of oxidative stress and lipid peroxidation respectively. AMP exposure results in a significant decrease in cellular GSH content as well as a significant enhancement of TBARS accumulation in a concentration and time-related manners. The obtained results suggested that 2-h exposure of hepatocytes to AMP (0.8 mM) was accompanied by submaximal responses. Therefore, a subsequent dose–response experiment was designed to evaluate the role of GSH modulation and oxidative stress in AMP toxicity in hepatocytes at 2 h. LDH release and TBARS generation were used as indicators in this experiment. Pretreatment with the GSH-depleting agents, chlorodinitrobenzene (CDNB), buthionine sulfoximine (BSO), or bis(chloroethyl)-nitrosurea (BCNU) enhanced the cytotoxicity of AMP. Conversely, pretreatment with GSH or sulfhydryl compounds such as methionine (MT), cysteine (CYS) or dithiothreitol (DTT) attenuated AMP toxicity. Similarly, co-incubation with enzymatic antioxidants, superoxide dismutase (SOD) or catalase (CAT) or iron chelator, desferroxiamine (DFO) or the hydroxyl radical scavengers, dimethylsulfoxide (DMSO) exhibited significant protection against AMP cytotoxicity. The present results indicate that AMP has a potential cytotoxic effect in isolated rat hepatocytes. AMP cytotoxicity is concentration-dependent. GSH depletion and oxidative stress play an important role in enhancing hepatotoxic potential of AMP in isolated rat hepatocyte. Thiol group-donors, antioxidants, free radical scavengers and iron chelators can play a critical role against AMP-induced cellular damage.

Related Topics
Health Sciences Medicine and Dentistry Pathology and Medical Technology
Authors
, , , ,