Article ID Journal Published Year Pages File Type
4137294 Pathophysiology 2011 8 Pages PDF
Abstract

Endotoxemia-induced hepatotoxicity is characterized by disturbed intracellular redox balance, excessive reactive oxygen species (ROS) generation inducing DNA, proteins and membrane lipid damages. In the present study, the protective effects of montelukast (MNT) against Escherichia coli lipopolysaccharides (LPS)-induced oxidative stress were investigated in rat liver. LPS (10 mg/kg, i.p.) was injected and the animals were sacrificed 6 h after LPS challenge. MNT (10 mg/kg) was administered orally for seven successive days before endotoxemia induction. Blood samples were withdrawn for assessing the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and levels of serum total bilirubin, total protein, tumor necrosis factor-alpha (TNF-α) and interleukin 1β (IL-1β). Livers were dissected out and used for histological examination or stored for the determination of malondialdehyde (MDA), protein carbonyl content (PCC), reduced glutathione (GSH) levels, enzymatic activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and myeloperoxidase (MPO). Sepsis significantly increased ALT, AST, ALP, LDH, total bilirubin, TNF-α and IL-1β, MPO, MDA and PCC levels and decreased total protein, GSH and enzymatic antioxidants (CAT, SOD and GSH-Px). MNT decreased the markers of liver injury (AST, ALT, ALP, LDH, and total bilirubin), inflammatory biomarkers (TNF-alpha, IL-1β), MDA, PCC and MPO after LPS challenge. In conclusion, MNT abrogates LPS-induced markers of liver injury and suppresses the release of inflammatory and oxidative stress markers via its antioxidant properties and enhancement enzymatic antioxidant activities.

Related Topics
Health Sciences Medicine and Dentistry Pathology and Medical Technology
Authors
, , , , ,