Article ID Journal Published Year Pages File Type
41509 Applied Catalysis A: General 2011 7 Pages PDF
Abstract

The dehydrogenation of isobutane to isobutene in adiabatic radial-flow moving-bed reactors was studied. First order rate expressions were considered for the primary reaction and deactivation kinetics incorporating the reversibility of dehydrogenation reaction. Kinetic data from a fixed-bed lab-scale reactor were used for modeling of the commercial size moving-bed reactor. The model was solved numerically by dividing the reactor into differential isothermal moving-bed reactors. The conversion of isobutane to isobutene was found to be equilibrium limited in commercial-sized reactors. The model predicted the trends of conversion, temperature, and catalyst activity with conversion levels somewhat lower than observed values which was attributed to the side-reactions.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (169 K)Download as PowerPoint slideResearch highlights► First-order kinetic expressions can express the trend of parameters in reactors. ► Slopes of adiabatic operating lines are underestimates due to side reactions. ► The dehydrogenation products leaving each reactor are close to equilibrium. ► Catalyst activity loss during a cycle before regeneration is large (ca. 75%).

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , ,