Article ID Journal Published Year Pages File Type
42288 Applied Catalysis A: General 2010 9 Pages PDF
Abstract

Esterification of organic acids with alcohols produces an industrially important class of substances with a variety of applications. This work presents an impregnation route to support H3PW12O40 (H3PW) on zirconia (ZrO2) in acidic aqueous solution (HCl 0.1 mol L−1) at different ratios (5, 10, 15, 20, 25, 40 and 60 wt%), which were further applied in the esterification of oleic acid with ethanol. Impregnated samples calcined at 200 °C for 4 h were characterized by FTIR, FT-Raman, XRD, 31P MAS NMR and BET surface area. No decomposition of the Keggin anion structure was observed under these conditions. The XRD results, surface area determination and catalytic tests pointed out that H3PW was well dispersed over the support and only a monoclinic phase of the commercial ZrO2 was detected. An optimum reaction performance (88% of oleic acid conversion) was achieved at 20 wt% loading, 100 °C, 4 h reaction and 1:6 (acid:ethanol) molar ratio. A small leaching of 8 wt% of the initial mass of this catalyst (i.e., the actual loading was 18.4 wt%) was also observed at the end of reaction, which affects the reaction kinetics. Thermal stability studies of 20%H3PW/ZrO2 catalyst, determined by 31P MAS NMR, XRD and FT-Raman revealed that Keggin anion decomposition begins at ca. 500 °C, which was confirmed by the respective decrease of the catalytic activity. A preliminary study of recyclability indicated that a treatment of the spent catalyst involving a sequence of washing with n-hexane, drying at 100 °C and calcining at 300 °C for 4 h, recovered conversion values as high as 70%.

Graphical abstractSupported H3PW12O40 on zirconia (5–60 wt%) was prepared by impregnation, characterized, and applied in the esterification reaction of oleic acid with ethanol under reflux condition (about 100 °C). An optimum reaction performance (88% of oleic acid conversion) was achieved at 20 wt% loading, 4 h reaction and 1:6 (acid:ethanol) molar ratio.Figure optionsDownload full-size imageDownload high-quality image (48 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , , ,