Article ID Journal Published Year Pages File Type
42384 Applied Catalysis A: General 2009 6 Pages PDF
Abstract

Alumina supported Ni, Co and bimetallic Ni–Co catalysts (with 9 wt.% nominal metal content) have been prepared, characterized and tested for the dry reforming of methane. For catalysts characterization the following techniques have been used: Atomic Absorption Spectroscopy (ICP-AES), Transmission Electron Microscopy (TEM), Temperature Programmed Reduction (TPR-H2) and Temperature Programmed Oxidation (TPO). The dry reforming of methane was carried out at 973 K using a mixture CH4:CO2 (1:1). Among the catalysts studied, those with the highest cobalt content (Co(9) and NiCo(1–8)) are the most active and stable, but they produce a large amount of carbon. The higher activity exhibited by cobalt rich catalysts is related with the higher activity of this metal for methane decomposition, while their remarkable stability seems to be due to the presence of large particles involved in long-term conversion, because they produce non-deactivating carbon deposits.

Graphical abstractAlumina supported Ni, Co and bimetallic Ni–Co catalysts (with 9 wt.% nominal metal content) have been prepared, characterized and tested for the dry reforming of methane. For catalysts characterization the following techniques have been used: Atomic Absorption Spectroscopy (ICP-AES), Transmission Electron Microscopy (TEM), Temperature Programmed Reduction (TPR-H2) and Temperature Programmed Oxidation (TPO). The dry reforming of methane was carried out at 973 K using a mixture CH4:CO2 (1:1). Among the catalysts studied, those with the highest cobalt content (Co(9) and NiCo(1–8)) are the most active and stable, but they produce a large amount of carbon. The higher activity exhibited by cobalt rich catalysts is related with the higher activity of this metal for methane decomposition, while their remarkable stability seems to be due to the presence of large particles involved in long-term conversion, because they produce non-deactivating carbon deposits.Figure optionsDownload full-size imageDownload high-quality image (143 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , ,