Article ID Journal Published Year Pages File Type
4250806 Seminars in Nuclear Medicine 2016 14 Pages PDF
Abstract

The prostate-specific membrane antigen (PSMA) is expressed by approximately 90% of prostate carcinomas. The expression correlates with unfavorable prognostic factors, such as a high Gleason score, infiltrative growth, metastasis, and hormone-independence. The high specificity, especially in the undifferentiated stage, makes it an excellent target for diagnosis and therapy. Therefore, antibodies and small molecule inhibitors have been developed for imaging and therapy. In 2011 PSMA-11, a ligand that consists of the Glu-urea-motif and the chelator HBED-CC, which can be exclusively radiolabeled with 68Ga for PET imaging, presented the clinical breakthrough for prostate cancer diagnostics. In two large diagnostic studies (n = 319 and n = 248) PET/CT with PSMA-11 successfully localized the recurrent tumor in approximately 90% of patients with biochemical relapse. Integrating PSMA-PET/CT into the planning phase of radiotherapy, the treatment concept is changed in 30%-50% of the patients. The combination of the Glu-urea-motif with DOTA, which can be labeled with several diagnostic and therapeutic radionuclides, opened new avenues for therapeutic usage of the small-molecule PSMA ligands. In the beginning of 2016, there are four confirmative reports (n = 19, n = 24, n = 30, and n = 56) from four different centers reporting a PSA response in approximately 70% of patients treated with 177Lu-labeled PSMA ligands. In conclusion, the data available up to now indicate a widespread use of PSMA ligands for diagnostic applications with respect to staging, detection of recurrence, or metastases in patients with rising tumor markers and for therapy in case of failure of guideline-compliant treatment.

Related Topics
Health Sciences Medicine and Dentistry Radiology and Imaging
Authors
, , , , ,