Article ID Journal Published Year Pages File Type
4251265 Seminars in Nuclear Medicine 2008 13 Pages PDF
Abstract

Neuroimaging biomarkers in movement disorders during the past decade have served as diagnostic agents (Europe), tools for evaluation of novel therapeutics, and a powerful means for describing pathophysiology by revealing in vivo changes at different stages of disease and within the course of an individual patient's illness. As imaging with agents tracking dopaminergic function become more available, the next decade promises to enhance our clinical sophistication in the optimal use of dopaminergic imaging biomarkers for differential diagnosis, characterization of at-risk populations, guiding selection and management of appropriate treatments. The clinical role of these agents as clinical tools goes hand in hand with the development and availability of disease-modifying drugs, which carry the additional requirement for early and accurate diagnosis and improved clinical monitoring once treatment is initiated. Challenges remain in the ideal application of neuroimaging in the clinical algorithms for patient assessment and management. Further, the application of imaging to other targets, both monamineric and nonmonoaminergic, could serve a function beyond the important delineation of pathologic change occurring in patients with Parkinson's disease to suggest some role in improved phenotyping and classification of patients with Parkinson's disease presenting with different symptom clusters. New areas of focus based on the elucidation of mechanisms at the cellular and molecular level, including intense interest in alpha-synuclein and other protein inclusions in neurons and glia, have piqued interest in their in vivo assessment using scinitigraphic methods. Perhaps ultimately, treatment that is targeted to a better delineated pathophysiology-based characterization of movement disorder patients will emerge. The application of neuroimaging biomarkers to multiple ends in movement disorders provides an important model for the multiple roles diagnostic imaging agents can serve in neurodegenerative disorders; for diagnosis, for elaborating pathophysiology in patient populations, for developing new drugs, ultimately for improving clinical management.

Related Topics
Health Sciences Medicine and Dentistry Radiology and Imaging
Authors
,