Article ID Journal Published Year Pages File Type
4300905 Journal of Surgical Research 2013 9 Pages PDF
Abstract

BackgroundThe exact mechanism by which erythropoietin protects the liver from ischemia reperfusion (I/R) injury is not yet known. In the present study, we examined the role of protein kinase B (PKB/AKT) and endothelial nitric oxide synthase (eNOS) in the protective effect of recombinant human erythropoietin (rHuEPO) on I/R injury of the liver.Materials and methodsWe used a liver in situ I/R model. One hundred twenty adult male Sprague-Dawley rats were divided randomly into six groups. rHuEPO and (or) LY294002 were injected in the tail vein before the operation, and its effect was assessed by measuring the serum levels of aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, nitric oxide (NO), and endothelin-1 (ET-1) and by histologic analysis. The expression of erythropoietin receptor (EPOR) and eNOS was measured by real-time polymerase chain reaction. Total AKT and eNOS and phosphorylated AKT and eNOS were examined by western blot.ResultsrHuEPO dramatically attenuated the functional and morphologic injuries. The serum levels of alanine aminotransferase and lactate dehydrogenase were significantly decreased, but the amount of NO in the serum was increased in the I/R + rHuEPO group. Accordingly, rHuEPO administration significantly ameliorated the histologic damages at 6 h after reperfusion. rHuEPO significantly stimulated the phosphorylation of AKT and eNOS in the rats after liver I/R.ConclusionsThe protective effect of rHuEPO in I/R injury is mediated via the activation of the phosphatidylinositol-3 kinase/AKT/eNOS signaling pathway, at least in part, by increasing p-AKT and p-eNOS and leads to the maintenance of an elevated level of NO.

Related Topics
Health Sciences Medicine and Dentistry Surgery
Authors
, , , , , , , ,