Article ID Journal Published Year Pages File Type
4302636 Journal of Surgical Research 2010 12 Pages PDF
Abstract

BackgroundThe delivery of proangiogenic agents in clinical trials of wound healing has produced equivocal results, the lack of real-time assessment of vascular growth is a major weakness in monitoring the efficacy of therapeutic angiogenesis, and surgical solutions fall short in addressing the deficiency in microvascular blood supply to ischemic wounds. Therefore, elucidation of the mechanisms involved in ischemia-induced blood vessel growth has potential diagnostic and therapeutic implications in wound healing.Materials and MethodsThree surgical models of wound ischemia, a cranial-based myocutaneous flap, an identical flap with underlying silicone sheeting to prevent engraftment, and a complete incisional flap without circulation were created on C57BL6 transgenic mice. Laser speckle contrast imaging was utilized to study the pattern of ischemia and return of revascularization. Simultaneous analysis of wound histology and microvascular density provided correlation of wound perfusion and morphology.ResultsCreation of the peninsular-shaped flap produced a gradient of ischemia. Laser speckle contrast imaging accurately predicted the spatial and temporal pattern of ischemia, the return of functional revascularization, and the importance of engraftment in distal flap perfusion and survival. Histologic analysis demonstrated engraftment resulted in flap revascularization by new blood vessel growth from the recipient bed and dilatation of pre-existing flap vasculature.ConclusionsFurther research utilizing this model of graded wound ischemia and the technology of laser speckle perfusion imaging will allow monitoring of the real-time restitution of blood flow for correlation with molecular biomarkers of revascularization in an attempt to gain further understanding of wound microvascular biology.

Related Topics
Health Sciences Medicine and Dentistry Surgery
Authors
, ,