Article ID Journal Published Year Pages File Type
4318796 Brain Research Bulletin 2014 4 Pages PDF
Abstract

•FG retrograde labeling was used to identify the TG neurons innervating the tongue.•FG-labeled neurons were found in the mandibular division of the trigeminal ganglia.•ANO1 was expressed in the mandibular division of the trigeminal ganglia.•Most ANO1-positive TG neurons innervating the tongue were also positive for TRPV1.•TRPV1 and ANO1 were co-expressed mainly in small- to medium-sized TG neurons.

Transient receptor potential vanilloid 1 (TRPV1) is a polymodal sensor that is activated by heat (>43 °C), acid, or capsaicin, the pungent ingredient of hot peppers. Reports that mice lacking TRPV1 display heat avoidance behaviors and TRPV1-negative neurons respond to heat suggest that an additional heat sensor is present. Anoctamin 1 (ANO1; also known as transmembrane protein 16A [TMEM16A]), is a component of Ca2+-activated chloride channels (CaCCs), and has been recently identified as a heat sensor, activated by temperatures over 44 °C. ANO1 is highly co-localized with TRPV1 in small-diameter dorsal root ganglion (DRG) neurons. The aim of the present study was to investigate co-expression of ANO1 and TRPV1 in rat trigeminal ganglion (TG) neurons innervating the tongue by using retrograde labeling and immunohistochemical techniques. Fluoro-gold (FG) retrograde labeling was used to identify the TG neurons innervating the anterior two thirds of the tongue; as expected, most labeling was detected in the mandibular division of the TGs. The FG-labeled TG neurons showed TRPV1 immunoreactivity (17.9%) and ANO1 immunoreactivity (13.7%), indicating that TRPV1- and ANO1-expressing neurons were present in the mandibular division of the TGs. Seventy-six percent of the ANO1-immunoreactive TG neurons were also immunoreactive for TRPV1; this co-expression was mainly detected in small- to medium-diameter TG neurons. The high degree of co-expression of TRPV1 and ANO1 suggests that cooperation between ANO1 and TRPV1 plays a role in the signaling pathways of nociceptive TG neurons.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, ,