Article ID Journal Published Year Pages File Type
4319176 Brain Research Bulletin 2011 6 Pages PDF
Abstract

In everyday life, we frequently alternate between performing discrete and rhythmic movements. When performing a periodic movement, two distinct movement types can be distinguished: highly harmonic vs. discrete-like. The harmonicity of the movement is used to classify it as one or the other. We asked: (1) whether the frequency at which a periodic movement is performed affects the harmonicity of the resultant movement; and (2) what underlies switching between these movement types. To answer these questions, we studied horizontal flexion/extension forearm movements in 13 young adults over a wide range of frequencies. Movements were performed either at a fixed frequency, or at gradually increasing or decreasing target frequencies. We found movement harmonicity to depend on the frequency of the movement. Furthermore, we found a reverse hysteresis behavior, where participants switched movement type in anticipation of the future-required frequency. These findings suggest that predictive control is employed in switching between movement types.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , ,