Article ID Journal Published Year Pages File Type
4320077 Brain Research Bulletin 2006 6 Pages PDF
Abstract

Enhancing inhibition via gamma-aminobutyric acid type A (GABAA) receptors contributes to anesthetic-induced impairment of long-term potentiation (LTP) of excitatory synaptic transmission, which may account for general anesthesia-associated memory impairment (amnesia). The neuron-specific K+–Cl− cotransporter 2 (KCC2) is necessary for fast synaptic inhibition via maintaining the low intracellular chloride concentration required for the hyperpolarizing actions of GABA via GABAA receptors. To explore a possible role of KCC2-dependent inhibition in anesthetic-induced impairment of LTP, we used field excitatory postsynaptic potentials (fEPSP) recording and immunoblotting to study the effect of propofol on LTP maintenance and KCC2 expression in CA1 region of rat hippocampal slices. We found that propofol (30 μM) not only impaired LTP expression but also prevented LTP-accompanied downregulation of KCC2 without affecting the basal transmission of glutamatergic synapses. Moreover, the recurrent inhibition in hippocampal slices was enhanced by propofol. These propofol-induced effects were completely abolished by picrotoxin, a specific GABAA receptor-chloride channel blocker. Thus, enhancement of GABAergic inhibition and suppression of neuronal excitability may account for the sustained expression of KCC2 and the impairment of LTP by propofol. Together, this study supports a novel role for KCC2 in LTP expression and gives hints to a molecular mechanism, by which anesthetics might cause impairment of LTP.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , ,