Article ID Journal Published Year Pages File Type
4320873 Neuron 2015 13 Pages PDF
Abstract

Recent human neurophysiological recordings have uncovered two fundamental modes of cerebral cortex activity with distinct dynamics: an active mode characterized by a rapid and sustained activity (“ignition”) and a spontaneous (resting-state) mode, manifesting ultra-slow fluctuations of low amplitude. We propose that both dynamics reflect two faces of the same recurrent loop mechanism: an integration device that accumulates ongoing stochastic activity and, either spontaneously or in a task-driven manner, crosses a dynamic threshold and ignites, leading to content-specific awareness. The hypothesis can explain a rich set of behavioral and neuronal phenomena, such as perceptual threshold, the high non-linearity of visual responses, the subliminal nature of spontaneous activity fluctuations, and the slow activity buildup anticipating spontaneous behavior (e.g., readiness potential). Further elaborations of this unified scheme, such as a cascade of integrators with different ignition thresholds or multi-stable states, can account for additional complexities in the repertoire of human cortical dynamics.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , ,