Article ID Journal Published Year Pages File Type
4321973 Neuron 2009 15 Pages PDF
Abstract

SummaryThe neuron-astrocyte synaptic complex is a fundamental operational unit of the nervous system. Astroglia regulate synaptic glutamate, via neurotransmitter transport by GLT1/EAAT2. Astroglial mechanisms underlying this essential neuron-glial communication are not known. We now show that presynaptic terminals regulate astroglial synaptic functions, GLT1/EAAT2, via kappa B-motif binding phosphoprotein (KBBP), the mouse homolog of human heterogeneous nuclear ribonucleoprotein K (hnRNP K), which binds the GLT1/EAAT2 promoter. Neuron-stimulated KBBP is required for GLT1/EAAT2 transcriptional activation and is responsible for astroglial alterations in neural injury. Denervation of neuron-astrocyte signaling by corticospinal tract transection, ricin-induced motor neuron death, or neurodegeneration in amyotrophic lateral sclerosis all result in reduced astroglial KBBP expression and transcriptional dysfunction of astroglial transporter expression. Presynaptic elements dynamically coordinate normal astroglial function and also provide a fundamental signaling mechanism by which altered neuronal function and injury leads to dysregulated astroglia in CNS disease.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , , , , , , , , , ,