Article ID Journal Published Year Pages File Type
4322184 Neuron 2009 14 Pages PDF
Abstract

SummaryProlonged stimulation leads to specific and stable changes in an animal's behavior. In interneurons, this plasticity requires spatial and temporal control of neuronal protein synthesis. Whether such translational control occurs in sensory neurons is not known. Adaptation of the AWC olfactory sensory neurons of C. elegans requires the cGMP-dependent protein kinase EGL-4. Here, we show that the RNA-binding PUF protein FBF-1 is required in the adult AWC for adaptation. In the odor-adapted animal, it increases translation via binding to the egl-4 3′ UTR. Further, the PUF protein may localize translation near the sensory cilia and cell body. Although the RNA-binding PUF proteins have been shown to promote plasticity in development by temporally and spatially repressing translation, this work reveals that in the adult nervous system, they can work in a different way to promote experience-dependent plasticity by activating translation in response to environmental stimulation.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , ,