Article ID Journal Published Year Pages File Type
4322576 Neuron 2007 15 Pages PDF
Abstract

SummarySynaptotagmin-1 and -2 are known Ca2+ sensors for fast synchronous neurotransmitter release, but the potential Ca2+-sensor functions of other synaptotagmins in release remain uncharacterized. We now show that besides synaptotagmin-1 and -2, only synaptotagmin-9 (also called synaptotagmin-5) mediates fast Ca2+ triggering of release. Release induced by the three different synaptotagmin Ca2+ sensors exhibits distinct kinetics and apparent Ca2+ sensitivities, suggesting that the synaptotagmin isoform expressed by a neuron determines the release properties of its synapses. Conditional knockout mice producing GFP-tagged synaptotagmin-9 revealed that synaptotagmin-9 is primarily expressed in the limbic system and striatum. Acute deletion of synaptotagmin-9 in striatal neurons severely impaired fast synchronous release without changing the size of the readily-releasable vesicle pool. These data show that in mammalian brain, only synaptotagmin-1, -2, and -9 function as Ca2+ sensors for fast release, and that these synaptotagmins are differentially expressed to confer distinct release properties onto synapses formed by defined subsets of neurons.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , ,