Article ID Journal Published Year Pages File Type
4322939 Neuron 2009 13 Pages PDF
Abstract

SummaryFunctional neural circuits are formed by eliminating early-formed redundant synapses and strengthening necessary connections during development. In newborn mouse cerebellum, each Purkinje cell (PC) is innervated by multiple climbing fibers (CFs) with similar strengths. Subsequently, a single CF is selectively strengthened by postnatal day 7 (P7). We find that this competition among multiple CFs occurs on the soma before CFs form synapses along dendrites. Notably, in most PCs, the single CF that has been functionally strengthened (the “winner” CF) undergoes translocation to dendrites while keeping its synapses on the soma. Synapses of the weaker CFs (the “loser” CFs) remain around the soma and form “pericellular nests” with synapses of the winner CFs. Then most perisomatic synapses are eliminated nonselectively by P15. Thus, our results suggest that the selective translocation of the winner CF to dendrites in each PC determines the single CF that survives subsequent synapse elimination and persistently innervates the PC.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , ,