Article ID Journal Published Year Pages File Type
4323353 Neuron 2006 12 Pages PDF
Abstract

SummaryThe mechanisms behind the induction of cellular correlates of memory by sensory input and their contribution to meaningful behavioral changes are largely unknown. We previously reported a graded memory in the form of sensorimotor adaptation in the electromotor output of electric fish. Here we show that the mechanism for this adaptation is a synaptically induced long-lasting shift in intrinsic neuronal excitability. This mechanism rapidly integrates hundreds of spikes in a second, or gradually integrates the same number of spikes delivered over tens of minutes. Thus, this mechanism appears immune to frequency-dependent fluctuations in input and operates as a simple pulse counter over a wide range of time scales, enabling it to transduce graded sensory information into a graded memory and a corresponding change in the behavioral output. This adaptation is based on an NMDA receptor-mediated change in intrinsic excitability of the postsynaptic neurons involving the Ca2+-dependent activation of TRP channels.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , ,