Article ID Journal Published Year Pages File Type
4323408 Neuron 2006 12 Pages PDF
Abstract

SummaryIn Aplysia, long-term synaptic plasticity is induced by serotonin (5-HT) or neural activity and requires gene expression. Here, we demonstrate that ApLLP, a novel nucleolus protein, is critically involved in both long-term facilitation (LTF) and behavioral sensitization. Membrane depolarization induced ApLLP expression, which activated ApC/EBP expression through a direct binding to CRE. LTF was produced by a single pulse of 5-HT 30 min after the membrane depolarization. This LTF was blocked when either ApLLP or ApC/EBP were blocked by specific antibodies. In contrast, ApLLP overexpression induced LTF in response to a single 5-HT treatment. Simultaneously, a siphon noxious stimulus (SNS) to intact Aplysia induced ApLLP and ApC/EBP expression, and single tail shock 30 min after SNS transformed short-term sensitization to long-term sensitization of siphon withdrawal reflex. These results suggest that ApLLP is an activity-dependent transcriptional activator that switches short-term facilitation to long-term facilitation.

Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , , , , , ,