Article ID Journal Published Year Pages File Type
4323445 Neuron 2006 14 Pages PDF
Abstract

SummaryIt has been demonstrated that synapses lacking functional synaptotagmin I (Syt I) have a decreased rate of synaptic vesicle endocytosis. Beyond this, the function of Syt I during endocytosis remains undefined. Here, we demonstrate that a decreased rate of endocytosis in sytnull mutants correlates with a stimulus-dependent perturbation of membrane internalization, assayed ultrastructurally. We then separate the mechanisms that control endocytic rate and vesicle size by mapping these processes to discrete residues in the Syt I C2B domain. Mutation of a poly-lysine motif alters vesicle size but not endocytic rate, whereas the mutation of calcium-coordinating aspartate residues (syt-D3,4N) alters endocytic rate but not vesicle size. Finally, slowed endocytic rate in the syt-D3,4N animals, but not sytnull animals, can be rescued by elevating extracellular calcium concentration, supporting the conclusion that calcium coordination within the C2B domain contributes to the control of endocytic rate.

Keywords
Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , ,