Article ID Journal Published Year Pages File Type
4324520 Brain Research 2013 10 Pages PDF
Abstract

•Pyruvate prevents death of HT22 cells and enhances their MCT2 content after OGD.•Pyruvate blunts rtPA-induced cytotoxic ROS generation after OGD-reoxygenation.•Pyruvate suppresses rtPA-induced matrix metalloproteinase after OGD-reoxygenation.•Pyruvate protects tight junction integrity between microvascular endothelial cells.•Pyruvate ameliorates inactivation of cytoprotective mTOR signaling by delayed rtPA.

Clinical application of recombinant tissue plasminogen activator (rtPA) for stroke is limited by hemorrhagic transformation, which narrows rtPA’s therapeutic window. In addition, mounting evidence indicates that rtPA is potentially neurotoxic if it traverses a compromised blood brain barrier. Here, we demonstrated that pyruvate protects cultured HT22 neuronal and primary microvascular endothelial cells co-cultured with primary astrocytes from oxygen glucose deprivation (OGD)/reoxygenation stress and rtPA cytotoxicity. After 3 or 6 h OGD, cells were reoxygenated with 11 mmol/L glucose±pyruvate (8 mmol/L) and/or rtPA (10 µg/ml). Measured variables included cellular viability (calcein AM and annexin-V/propidium iodide), reactive oxygen species (ROS; mitosox red and 2′,7′-dichlorofluorescein diacetate), NADPH, NADP+ and ATP contents (spectrophotometry), matrix metalloproteinase-2 (MMP2) activities (gelatin zymography), and cellular contents of MMP2, tissue inhibitor of metalloproteinase-2 (TIMP2), and phosphor-activation of anti-apoptotic p70s6 kinase, Akt and Erk (immunoblot). Pyruvate prevented the loss of HT22 cells after 3 h OGD±rtPA. After 6 h OGD, rtPA sharply lowered cell viability; pyruvate dampened this effect. Three hours OGD and 4 h reoxygenation with rtPA increased ROS formation by about 50%. Pyruvate prevented this ROS formation and doubled cellular NADPH/NADP+ ratio and ATP content. In endothelial cell monolayers, 3 h OGD and 24 h reoxygenation increased FITC-dextran leakage, indicating disruption of intercellular junctions. Although rtPA exacerbated this effect, pyruvate prevented it while sharply lowering MMP2/TIMP2 ratio and increasing phosphorylation of p70s6 kinase, Akt and Erk. Pyruvate protects neuronal cells and microvascular endothelium from hypoxia-reoxygenation and cytotoxic action of rtPA while reducing ROS and activating anti-apoptotic signaling. These results support the proposed use of pyruvate as an adjuvant to dampen the side effects of rtPA treatment, thereby extending rtPA’s therapeutic window.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , ,