Article ID Journal Published Year Pages File Type
4326030 Brain Research 2011 9 Pages PDF
Abstract

The recombination activating genes (RAGs) encode two enzymes that play key roles in the adaptive immune system. RAG1 and RAG2 mediate VDJ recombination, a process necessary for the maturation of B- and T-cells. Interestingly, RAG1 is also expressed in the brain, particularly in areas of high neural density such as the hippocampus, although its function is unknown. We tested evidence that RAG1 plays a role in brain function using a social recognition memory task, an assessment of the acquisition and retention of conspecific identity. In a first experiment, we found that RAG1-deficient mice show impaired social recognition memory compared to mice wildtype for the RAG1 allele. In a second experiment, by breeding to homogenize background genotype, we found that RAG1-deficient mice show impaired social recognition memory relative to heterozygous or RAG2-deficient littermates. Because RAG1 and RAG2 null mice are both immunodeficient, the results suggest that the memory impairment is not an indirect effect of immunological dysfunction. RAG1-deficient mice show normal habituation to non-socially derived odors and habituation to an open-field, indicating that the observed effect is not likely a result of a general deficit in habituation to novelty. These data trace the origin of the impairment in social recognition memory in RAG1-deficient mice to the RAG1 gene locus and implicate RAG1 in memory formation.

Research Highlights► The RAG1 gene initiates somatic recombination critical for adaptive immune function. ► RAG1 is expressed in the brain, including hippocampus, but its function is unknown. ► We find that RAG1-deficient mice show impaired memory for conspecifics. ► This effect is not likely due to immunodeficiency or impaired habituation to novelty.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , ,