Article ID Journal Published Year Pages File Type
4328556 Brain Research 2009 10 Pages PDF
Abstract

We attempted to monitor the nigrostriatal dopaminergic system in rats with positron emission tomography (PET) during the progression of two experimental disease states. One model was 6-hydroxydopamine (6-OHDA) lesioning and the other was direct gene transfer of the microtubule-associated protein tau to the substantia nigra using an adeno-associated virus vector (AAV9). The PET ligand was 6-[18F]fluoro-l-m-tyrosine (FMT), imaged prior to, and at two intervals after initiating dopaminergic neurodegeneration. The striatum was delineated with the aid of repeated PET imaging (FMT and sodium fluoride for bone), realignment to subsequent computed axial tomography scans, and registration to an atlas, which proved essential to tracking disease progression. The striata on the two sides of the brain were compared over time after unilateral lesioning treatments. 6-OHDA reduced uptake on the ipsilateral side relative to the untreated contralateral side at both 1 and 4 weeks after lesioning, while the AAV9 tau led to reduced uptake of the tracer in the striatum at 4 weeks, but not 1 week after treatment. The amplitude of the loss of FMT uptake in striatum at 4 weeks with either model was subtle relative to the postmortem histological analysis of the tissue, but the multi-modal imaging analysis yielded statistical effects that matched well with the histology in terms of the timing of the loss of dopaminergic markers. Live longitudinal imaging successfully tracked two distinct types of disease progression in individual rats, although the FMT is not a sensitive ligand to monitor the extent of the lesion.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , ,