Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4329939 | Brain Research | 2008 | 10 Pages |
Abstract
Ataxia with vitamin E deficiency is caused by mutations in α-tocopherol transfer protein (α-TTP) gene and it can be experimentally generated in mice by α-TTP gene inactivation (α-TTP-KO). This study compared α-tocopherol (α-T) concentrations of five brain regions and of four peripheral organs from 5 months old, male and female, wild-type (WT) and α-TTP-KO mice. All brain regions of female WT mice contained significantly higher α-T than those from WT males. α-T concentration in the cerebellum was significantly lower than that in other brain regions of WT mice. These sex and regional differences in brain α-T concentrations do not appear to be determined by α-TTP expression which was undetectable in all brain regions. All the brain regions of α-TTP-KO mice were severely depleted in α-T. The concentration of another endogenous antioxidant, total glutathione, was unaffected by gender but was decreased slightly but significantly in most brain regions of α-TTP-KO mice. The results show that both gender and the hepatic α-TTP, but not brain α-TTP gene expression are important in determining α-T concentrations within the brain. Interestingly, functional abnormality (ataxia) develops only very late in α-TTP-KO mice in spite of the severe α-tocopherol deficiency in the brain starting at an early age.
Related Topics
Life Sciences
Neuroscience
Neuroscience (General)
Authors
Kishorchandra Gohil, Saji Oommen, Hung T. Quach, Vihas T. Vasu, Hnin Hnin Aung, Bettina Schock, Carroll E. Cross, Govind T. Vatassery,