Article ID Journal Published Year Pages File Type
4330527 Brain Research 2007 7 Pages PDF
Abstract
Bipolar cells are responsible for transmitting light signals from the photoreceptors to the ganglion cells in the vertebrate retina. Their maturation process is not only important for establishing normal visual function, but may also underlie the dendritic remodeling of ganglion cells during development. It is known that light deprivation affects the synaptic connections of ganglion cells in the mammalian retina, but little is known about impact of visual experience on bipolar cell development. We used dye injection and gene gun labeling to identify bipolar cells, and characterized their morphological differentiation in normal-reared and dark-reared rabbits. Our results show that immature bipolar cells can be found as early as P1-3, and most characteristic bipolar cells can be identified during P4-6. More importantly, we found that light deprivation causes a delay rather than a permanent arrest of bipolar cell maturation in the rabbit retina. By eye opening at P10-11, both normal-reared and dark-reared rabbits possessed adult-like bipolar cells. This suggests that visual experience has a facilitating effect on the morphological differentiation of bipolar cells.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, ,