Article ID Journal Published Year Pages File Type
4331356 Brain Research 2007 7 Pages PDF
Abstract
No satisfactory method currently exists for repairing long peripheral nerve defects. Efforts have been made to fabricate bioactive artificial nerve conduits, comprised of a biomaterial pre-seeded with Schwann cells (SCs), which creating a favorable micro-environment for axonal regeneration, to be an alternative to autografting by means of tissue engineering. Small intestinal submucosa (SIS) possesses special biological characteristics and is comprehensively researched for tissue repairing at varied tissues and organs. This study investigated the biocompatibility of SIS with SCs in vitro. Cultured rat SCs were seeded on SIS. Cell morphology was observed by light microscopy, scanning electron microscopy and transmission electron microscope. The viability of SCs was measured by MTT assay. Secretion of NGF-β and BDNF was quantitatively assessed by ELISA, and NGF-β mRNA and BDNF mRNA were semi-quantitatively assessed by RT-PCR. The results indicated that SCs could adhere, migrate and proliferate on the surface of SIS in good condition with productive function of secreting growth factors. SIS has a good biocompatibility with SCs and SIS pre-seeded with SCs has potential to be an alternate candidate of autografting for repairing long peripheral nerve defects.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , ,