Article ID Journal Published Year Pages File Type
4331460 Brain Research 2007 10 Pages PDF
Abstract

The formation of Aβ and its subsequent deposition in senile plaques are considered to be initial events that lead to a cascade of pathological changes in AD. Mediators of Aβ-induced oxidative stress are known to cause oxidative damage to macromolecules. However, the molecular mechanisms by which Aβ-induced oxidative stress leads to neuronal cell death are not fully understood. Here we show that Aβ-induced oxidative stress activates the pro-death gene BNIP3. Aβ treatment results in mitochondrial dysfunction, accumulation of reactive oxygen species, and subsequent expression of BNIP3 in rat primary cortical neurons. Pretreatment with antioxidants abolished Aβ-induced BNIP3 expression and attenuated cell death, demonstrating the role of oxidative stress in BNIP3 induction. Aβ-induced BNIP3 expression may be mediated by hypoxia-inducible factor-1 (HIF-1) because Aβ-treatment induced accumulation and nuclear translocation of HIF-1 and knock-down of HIF-1 by RNAi inhibited BNIP3 expression. Finally, knockdown of BNIP3 reduced Aβ-induced neuronal death. Together, these results suggest a potential pathological role of BNIP3 in the etiology of AD.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , , ,