Article ID Journal Published Year Pages File Type
4331908 Brain Research 2006 13 Pages PDF
Abstract

Mechanisms of epileptiform activity in a model nervous system (buccal ganglia of Helix pomatia) are presented. The ganglia contain the identified giant neurons B1 through B4. For epileptiform activity, pentylenetetrazol (1 mmol/L to 40 mmol/L) or etomidate (12.5 μmol/L to 500 μmol/L) were applied. Membrane pressure was measured using a Wilhelmy film balance. In electrophysiological experiments, both drugs induced several effects in all studied neurons: membrane resistance increased, down-stroke of action potentials declined, and all types of chemical synaptic potentials decreased (the latter concerns pentylenetetrazol only). The threshold was 1 mmol/L of pentylenetetrazol and 12.5 μmol/L of etomidate. Epileptiform potentials developed in neurons that had expressed the membrane mechanisms underlying pacemaker potentials. The threshold of this development was again 1 mmol/L of pentylenetetrazol and 12.5 μmol/L of etomidate. Epileptiform depolarizations appeared with 40 mmol/L of pentylenetetrazol and 500 μmol/L of etomidate. In biochemical experiments, both drugs incorporated into an artificial phospholipids membrane and increased pressure in the membrane. The threshold of pressure increase was 1 mmol/L of pentylenetetrazol and 12.5 μmol/L of etomidate. Pressure increased dose-dependently and was 69% and 63% above starting pressure of 10 mN/m with epileptogenic concentrations of pentylenetetrazol (40 mmol/L) and of etomidate (500 μmol/L), respectively. It is postulated that amphiphilic substances incorporate into cell membranes and increase intramembranous pressure, and that this disturbs several membrane processes mechanically and leads to epileptic depolarizations in pacemaker neurons.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , ,