Article ID Journal Published Year Pages File Type
4332742 Brain Research 2006 15 Pages PDF
Abstract

The multi-electrode arrays (MEA) technology for the recording of brain slices is available for more than 10 years. However, despite its relative simplicity, this recording technique is not widely used in academic or pharmaceutical research laboratories. We illustrate here that MEA provide multiple possibilities to investigate some network physiological properties as well as to evaluate the pharmacological effects of compounds. We first document that MEA allow to trigger and to record conventional FP which are inhibited by the block of action potential propagation (with 500 nM TTX). FP recorded with MEA are sensitive to ionic substitutions, to ionotropic glutamate receptor antagonists (CNQX or NBQX) and to energetic failure. Second, we illustrate that different “classical” protocols (paired-pulse, LTP, chemical LTD), revealing synaptic plasticity mechanisms, could be performed. Third, we document that MEA allow spatial and temporal discriminations for the effects of known pharmacological compounds such as competitive antagonist (gabazine, bicuculline) and allosteric modulators (steroids) of GABAA receptors. In conclusion, we illustrate that MEA recordings of adult rat hippocampal slices constitute a powerful and sensitive system to evaluate the effect of molecules on basic synaptic propagation/transmission and on synaptic plasticity processes.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , ,