Article ID Journal Published Year Pages File Type
4332837 Brain Research 2006 10 Pages PDF
Abstract

This article reviews our studies of the effect of monaural middle ear destruction on midbrain auditory response properties of the laboratory mouse, Mus musculus. Monaural middle ear destruction was performed on juvenile and adult mice and the auditory sensitivity of neurons in the midbrain inferior colliculus (IC) ipsilateral and contralateral to the intact ear was examined 4 weeks later. When stimulated with sound pulses, IC neurons of the control mice typically had lower minimum threshold, larger dynamic range, and sharper frequency tuning curve than IC neurons of the experimental juvenile and adult mice. In the experimental mice, neurons in the ipsilateral IC had significantly longer latency, higher minimum threshold, and smaller dynamic range than neurons in the contralateral IC. When determined at two sound directions (ipsilateral 40° and contralateral 40° to the recording site), IC neurons of the control mice had higher minimum threshold, sharper frequency tuning curve but smaller dynamic range at I-40° than at C-40°. However, these direction-dependent response properties were not observed for IC neurons of the experimental juvenile and adult mice. Clear tonotopic organization was only observed in the IC of the control mice and experimental adult mice but not in the IC of experimental juvenile mice. These different response properties are discussed in relation to the effect of monaural middle ear destruction.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, ,