Article ID Journal Published Year Pages File Type
4334016 Brain Research Reviews 2006 10 Pages PDF
Abstract

The culture of hippocampal–entorhinal brain slices is a widely used model for studying neuronal differentiation, axon growth and pathfinding in vitro. The application of tracers (e.g. biocytin) is a well-established method for studying single or multiple neurons and their extensions in this model. For quantifying the growth of high numbers of axons after lesion, however, genetically expressed enhanced green fluorescent protein (EGFP) has proven particularly useful for labeling living axons in vivo and in vitro. Here, we introduce several EGFP-expressing mouse lines which improve the organotypic brain slice model. The questions addressed determine which mouse line to use: β-actin-EGFP mice for labeling all cells and their extensions; Tau-EGFP mice for labeling the axoplasma; or Thy-1.2-EGFP mice for labeling the axonal membrane. Cocultures of EGFP-positive entorhinal cortex explants with EGFP-negative hippocampal explants allow the monitoring of fluorescent axons growing into the hippocampus in an easily quantifiable manner.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , ,