Article ID Journal Published Year Pages File Type
4336151 Journal of Neuroscience Methods 2009 9 Pages PDF
Abstract

Tau protein plays an important role in stabilising and assembling neuronal microtubules. Pathological changes in expression and aggregation of tau isoforms containing three (3R-tau) and four (4R-tau) microtubule-binding repeat domains are associated with several tauopathies. This paper describes novel sandwich ELISAs for quantification of 3R- and 4R-tau in brain. The assays are constructed using well-characterised isoform-specific antibodies (RD3 and RD4) as capture antibodies and an affinity-purified HRP–anti-tau peptide antibody and biotin-tyramide amplification for detection. For 3R-tau, we achieved a minimal detection limit in buffer of 460 pg mL−1 and a recovery of 81.0% using 500 pg mL−1 recombinant 3R-tau spiked in diluted brain homogenate. Mean intra- and inter-assay variation of the 3R-tau ELISA was 8.8 and 10.5%, respectively. For 4R-tau, the detection limit was 780 pg mL−1 and the recovery of 5 ng mL−1 spiked recombinant 4R-tau was 86.0% and the mean intra- and inter-assay variation was 10.4 and 15.6%, respectively. With these assays, we showed that in progressive supranuclear palsy (PSP) brains, 4R-tau is significantly increased in frontal cortex and caudate, the two regions that are usually associated with 4R-tau-dominant pathology. This increase was not observed in occipital lobe, a region that is spared of tau inclusions. No differences in 3R-tau levels were found between PSP and control brains in all regions tested. With this, we have for the first time developed ELISAs for quantification of 3R- and 4R-tau isoforms in pathological samples. These could prove useful in the pathological investigation and differential diagnosis of tauopathies.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , ,