Article ID Journal Published Year Pages File Type
4336317 Journal of Neuroscience Methods 2008 12 Pages PDF
Abstract

The purpose of this study was to improve the accuracy rate of brain tissue classification in magnetic resonance (MR) imaging using a boosted decision tree segmentation algorithm. Herein, we examined simulated phantom MR (SPMR) images, simulated brain MR (SBMR) images, and a real data. The accuracy rate and k index when classifying brain tissues as gray matter (GM), white matter (WM), or cerebral-spinal fluid (CSF) were better when using the boosted decision tree algorithm combined with a fuzzy threshold than when using a statistical region-growing (SRG) algorithm [Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M, et al. The medical imaging interaction toolkit. Med Imag Anal 2005;9:594–604] and an adaptive segmentation (AS) algorithm [Wells WM, Grimson WEL, Kikinis R, Jolesz FA. Adaptive segmentation of MRI data. IEEE Trans Med Imag 1996;15:429–42]. The segmentation performance when using this algorithm on real data from brain MR images was also better than those of SRG and AS algorithm. Segmentation of a real data using the boosted decision tree produced particularly clear brain MR imaging and permitted more accurate brain tissue segmentation. In conclusion, a decision tree with appropriate boost trials successfully improved the accuracy rate of MR brain tissue segmentation.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , ,